
 
 

 2012;72:2738-2745. Published OnlineFirst April 5, 2012.Cancer Res
 
Alejandro Garcia-Uribe, Jun Zou, Madeleine Duvic, et al.
 
Using Oblique Incidence Diffuse Reflectance Spectrometry

 Diagnosis of Melanoma and Nonmelanoma Skin CancerIn Vivo
 
 

 
 

Updated Version
 10.1158/0008-5472.CAN-11-4027doi:

Access the most recent version of this article at: 

 
 

Cited Articles
 http://cancerres.aacrjournals.org/content/72/11/2738.full.html#ref-list-1

This article cites 43 articles, 3 of which you can access for free at:

 
 

E-mail alerts  related to this article or journal.Sign up to receive free email-alerts

Subscriptions
Reprints and

.pubs@aacr.orgDepartment at
To order reprints of this article or to subscribe to the journal, contact the AACR Publications

Permissions
.permissions@aacr.org

To request permission to re-use all or part of this article, contact the AACR Publications Department at 

 American Association for Cancer Research Copyright © 2012 
 on June 20, 2012cancerres.aacrjournals.orgDownloaded from 

Published OnlineFirst April 5, 2012; DOI:10.1158/0008-5472.CAN-11-4027

http://cancerres.aacrjournals.org/lookup/doi/10.1158/0008-5472.CAN-11-4027
http://cancerres.aacrjournals.org/content/72/11/2738.full.html#ref-list-1
http://cancerres.aacrjournals.org/cgi/alerts
mailto:pubs@aacr.org
mailto:permissions@aacr.org
http://cancerres.aacrjournals.org/
http://www.aacr.org/


Integrated Systems and Technologies

In Vivo Diagnosis of Melanoma and Nonmelanoma Skin
Cancer Using Oblique Incidence Diffuse Reflectance
Spectrometry

Alejandro Garcia-Uribe1,2, Jun Zou2, Madeleine Duvic3, Jeong Hee Cho-Vega4,
Victor G. Prieto4, and Lihong V. Wang1

Abstract
Early detection and treatment of skin cancer can significantly improve patient outcome. However, present

standards for diagnosis require biopsy and histopathologic examinations that are relatively invasive, expensive,
and difficult for patients with many early-stage lesions. Here, we show an oblique incidence diffuse reflectance
spectroscopic (OIDRS) system that can be used for rapid skin cancer detection in vivo. This system was tested
under clinical conditions by obtaining spectra from pigmented and nonpigmented skin lesions, including
melanomas, differently staged dysplastic nevi, and common nevi that were validated by standard pathohistologic
criteria. For diagnosis of pigmented melanoma, the data obtained achieved 90% sensitivity and specificity for a
blinded test set. In a second analysis, we showed that this spectroscopy system can also differentiate
nonpigmented basal cell or squamous cell carcinomas from noncancerous skin abnormalities, such as actinic
keratoses and seborrheic keratoses, achieving 92% sensitivity and specificity. Taken together, our findings
establish how OIDRS can be used to more rapidly and easily diagnose skin cancer in an accurate and automated
manner in the clinic. Cancer Res; 72(11); 2738–45. �2012 AACR.

Introduction
Skin cancer is the most common form of cancer, with about

a million new cases in the United States each year (1). Often,
skin cancer is difficult to diagnose noninvasively, as malignant
skin lesions can closely resemble their benign counterparts.
Different lesion types can have similar characteristics, further-
ing the problem in discriminating among them. Among all the
skin lesions, melanoma is the most malignant type and is the
leading cause of death from the skin diseases. The American
Cancer Society estimates that there will be approximately
62,000 new cases of melanoma in the United States this year,
with about 8,000 deaths (1). Melanoma can be mistaken for
common nevi, dysplastic nevi, and seborrheic keratoses. Com-
mon nevi are benign moles formed by a cluster of melanocytes
in the basal layer of the epidermis or in the top layers of the
dermis. Dysplastic nevi are moles with atypical size, shape, or
organization. Depending on the degrees of atypia, dysplastic
nevi can bemild, moderate, or severe. Dysplastic nevi are more

likely than common nevi to develop into melanomas (2).
Finally, seborrheic keratoses are benign wart-like tumors that
are very common in people older than 40 years.

In addition to melanoma, skin cancers also include squa-
mous cell carcinomas (SCC) and basal cell carcinomas (BCC).
Squamous cell carcinomas arise from dividing keratinocytes of
the epidermis and are often recognized by hyperkeratotic
crusts or scales or by ulceration in the later stages. Actinic
keratosis, a precancerous skin tumor caused by sun exposure,
can in some cases turn into SCC, which in invasive cases may
metastasize to local nodes and beyond (3). BCCs are derived
from keratinocytes (4). BCCs are locally invasive, slow-growing
tumors characterized by islands or nests of basal keratinocytes
invading the dermis. There are several clinical and histologic
subtypes of BCCs. Superficial BCCs are papulosquamous
lesions characterized by red, scaly raised plaques.

Early detection and treatment of skin cancer can signifi-
cantly improve patient outcomes. In clinical practice, visual
examination determines whether a skin lesion is cancerous
based on the ABCDE rule (asymmetry, border, color, diameter,
and evolution) and the change in the appearance of a mole or
pigmented area over a period of time. However, clinical diag-
nostic sensitivity and specificity vary greatly, depending on the
expertise and visual skills of the clinician. Consequently,
histopathologic examination of the excised suspicious element
still remains the gold standard. However, biopsy is an invasive
procedure and leaves a scar at the biopsy site, which otherwise
would be unnecessary in the case of benign lesions. Moreover,
the removal of every lesion can be unacceptable for patients
with large numbers of skin abnormalities, such as in dysplastic
nevi syndrome.
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Changes in the cell nuclearmatrix have been associatedwith
cell and tissue structures, which are important features in the
diagnosis of cancer (5, 6). Morphologic changes in tumor cells
include alterations of nuclear structure such as changes in
nuclear size and shape (5). These alterations are important
characteristics used in cancer diagnosis. Cell nuclei, mitochon-
dria, other cytoplasmic organelles, and cell nuclei are themajor
light scatterers in the skin tissue. In malignant tissues, larger
atypical nuclei and larger cell volume are a main cause for the
significant increase in the light scattering (7). For example, the
reduced scattering coefficient has been shown to generally
increase with the degree of dysplasia or malignancy of skin
lesions (8).
Recently, noninvasive spectroscopic methods for tissue

diagnosis have been studied for a number of organ systems,
including the skin (9–17), gastrointestinal tract (18–22), cervix
(23–25), and breast (26–28). The absorption of light can provide
information of the biochemical composition of the skin. The
light scattering properties of skin can provide information
about its microarchitecture (29). Fluorescence spectroscopy
can detect disease states (30, 31). Because fluorescence is a
manifestation of the biochemical environment of the cell, it
should be a specific indicator of cellular alterations caused
because of disease (32). Some studies also suggest that Raman
spectroscopy can detect changes in protein and lipid structure
that can be used to diagnose skin tumors (13). In this study, we
report the use of spatially resolved oblique incidence diffused
reflectance spectroscopy (OIDRS) as a noninvasive tool to
discriminate melanoma and nonmelanoma skin cancer from
benign and premalignant skin lesions in vivo. Spatiospectral
diffuse reflectance data within the wavelength range of 455 to
765 nm was collected from multiple types of pigmented and
nonpigmented skin lesions (n ¼ 678). The data were used in
combination with artificial neural network (ANN) analysis to
separate skin cancers such as pigmentedmalignantmelanoma
and nonpigmented BCCs and SCCs from their benign counter-
parts. Neural networks are particularly helpful for classifica-
tion. ANN classifiers are more powerful than common statis-
tical classifiers because they do not need hypothesis about data
distribution, linearity, or correlations (33). ANNs provide better
prediction accuracy and higher sensitivity and specificity with
optimal use of the available information.

Materials and Methods
Figure 1 is a schematic of the experimental OIDRS system.

The system was built onto a portable cart; it was easily moved
to the patient examination rooms. To target both small and
large skin lesions, we constructed an optical fiber probe using
micromachining technology. The probe consisted of 3 source
fibers and 2 linear arrays of 12 collectionfiberswithin an area of
2� 2 mm2. To conduct OIDRS measurements on skin lesions,
the optical probe was placed gently on the skin area of interest
without significant compression. The opticalmultiplexer deliv-
ered light through only one oblique source fiber at a time to the
area of interest. Once the light was delivered to the skin, it
interacted with the skin tissue, and the spatially resolved
diffuse reflectance was collected by one set of collection fibers.

The collection fibers were coupled to an imaging spectrograph
that generated an optical spectrum from 455 to 765 nm for the
collection channel. A charge-coupled device (CCD) camera
collected the spectral images, which were stored on a com-
puter for data analysis. The data collection took less than 5
minutes, and it did not interfere with the standard health care
provided to the patients.

Data were collected at the University of Texas MDAnderson
Cancer Center (Houston, TX). A physician identified the lesion
(s) to bemeasured before the scheduled biopsy. To average out
the effect of structural anisotropy of the skin tissue, the
measurement of each lesion was repeated 4 times to obtain
images from different orientations. To provide self-references,
the samemeasurementswere also repeated on the neighboring
healthy skin tissues. The anisotropy is defined as the variation
of the measurements when conducted in different directions.
After the measurements were completed, a biopsy was carried
out for each skin lesion and submitted for histopathologic
analysis. The histopathologic analysis determined that the
measured pigmented lesions consisted of benign common
nevi, mildly dysplastic nevi (DN1), moderately dysplastic nevi
(DN2), severely dysplastic nevi (DN3), and melanomas. The
criteria used to divide dysplastic nevi into these tree categories
are described in the work of Shea and colleagues 34. Of the 407
pigmented skin lesions, 271 were used for the training sets of
ANN classifiers (Tables 1 and 2) to separate malignant mela-
noma from varieties of nevi. The remaining 136 data sets were
used to test the efficacy of the ANN classifiers. The nonpig-
mented lesions consisted of BCCs, SCCs, benign actinic ker-
atoses, and seborrheic keratoses. Among the 266 nonpigmen-
ted lesions, 177 were used to train the ANN classifier and the
remaining 89 were used for testing.

Results
The absorption coefficient (ma) and reduced scattering

coefficient (ms
0) of the skin lesions from the measured diffuse
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Figure 1. A schematic of the experimental OIDRS system.
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reflectance were estimated on the basis of a combination of
both diffusion theory and scalable Monte Carlo simulation (35,
36). Because the optical transport mean free path (Lt0) is a
function of the wavelength of the incident light, the location of
the detectorsmay fall eitherwithin or outside the range of Lt0 at
different wavelengths within the wide spectrum (455–765 nm).
At certain wavelengths, when the location of the detectors falls
outside the range of Lt0, the absorption and scattering optical
properties of the skin lesion can be directly calculated from
diffuse reflectance with a straightforward diffusion theory–
based analytic model. However, this model would fail at other
wavelengths when the detector location falls within Lt0. In this
case, scalable Monte Carlo simulation was conducted to
deduce the absorption and scattering optical properties of the
skin lesions in an inverse problem by calculating andmatching
the simulated diffuse reflectance results with the actual
measurements.

The optical properties of human skin vary significantly
between locations and individuals, depending on race, age,
sun exposure, and skin type. Figure 2A and B show the ma for

the statistically significant skin types included in this study.We
reduced these variations by measuring and subtracting the
optical priorities from the surrounding healthy skin for each
lesion. The differential absorption coefficient spectrum is
defined as

DmaðlÞ ¼ maðlÞL � maðlÞN ðAÞ

wherema(l)L andma(l)N are the absorption coefficient spectra
measured from the lesion and from the normal surrounding
skin, respectively. In a similar way, the differential reduced
scattering coefficient is defined as

Dm0
sðlÞ ¼ m0

sðlÞL � m0
sðlÞN ðBÞ

Figure 2 shows the average absorption coefficient ma(l)L,
differential absorption coefficient Dma(l), reduced scattering

coefficient ms
0(l)L, and differential reduced scattering coeffi-

cientDms
0(l) formelanoma, dysplastic nevi, and commonnevi,

respectively.
The diffuse reflectance of tissue is related largely to

absorption and scattering. Mitochondria, cell nuclei, and
other cytoplasmic organelles are known changeable para-
meters in cancerous tissues and are major light scatterers in
skin tissue (37, 38). Although no single histologic variable
specifically distinguishes these types of pigmented lesions,
nuclear atypia seems directly related to the amount of light
scattering. Dysplastic nevi are characterized by nuclear
enlargement, slight irregularity, and hyperchromasia, with
clumping of chromatin and sometimes with prominent
nucleoli. Dysplastic nevi present atypical features that are
both clinically and histologically important as simulants of
melanoma. Like other cancers, most malignant melanomas
evolve through a number of stages of tumor progression.
Clinically, many melanomas begin as a pigmented patch of
skin, which evolves to become a palpable plaque, and
enlarges, as if it were along the radii of an imperfect circle
(39). Nests and single melanocytes of variable sizes shapes
are present in the epidermis in a pagetoid pattern, charac-
teristic of superficial melanoma. Prognosis has long been
known to correlate with melanoma thickness as measured
microscopically. These factors can increase the contribution
of scattering to the diffuse reflection on the surface.

Table 1. Pigmented lesions confusion matrix

Predicted

Actual M DN3 DN2 DN1 CN Total

Training
MM 20 0 0 0 0 20
DN3 1 28 0 0 0 29
DN2 4 2 118 2 1 127
DN1 3 1 0 33 1 38
CN 4 2 2 1 48 57

Testing
MM 9 0 1 0 0 10
DN3 2 12 1 0 0 15
DN2 6 2 53 2 0 63
DN1 1 1 0 16 2 20
CN 4 1 1 0 22 28

Abbreviations: CN, common nevi; DN1, mildly dysplastic
nevi; DN2, moderately dysplastic nevi; DN3, severely dys-
plastic nevi; M, melanomas.

Table 2. Sensitivity and specificity for each classifier included in the hierarchical classification scheme

Training Testing Overall

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

MM vs. (DN3 DN2, DN1, CN) 100% 95% 90% 90% 97% 93%
DN3 vs. (DN2, DN1, CN) 100% 98% 92% 96% 98% 97%
DN2 vs. (DN1, CN) 98% 98% 96% 98% 97% 98%
DN1 vs. CN 97% 98% 89% 100% 94% 99%

Abbreviations: CN, common nevi; DN1, mildly dysplastic nevi; DN2, moderately dysplastic nevi; DN3, severely dysplastic nevi; M,
melanomas.
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A one-way ANOVA test was carried out to compare ma(l)L
for common nevi, dysplastic nevi, and melanoma. The P value
was significant (P < 0.01) in the spectral region between 488
and 576 nm. Pairwise comparisons using Tukey test showed a
significant difference only between common nevi and mela-
noma. A similar analysis for ms

0(l)L shows a significant differ-
ence of at least onemean for the entire wavelength range (455–
765 nm). The ANOVA test of the Dma(l) showed statistical
difference in the range between 455 and 599 nm, with the
lowest P value at 556 nm (P ¼ 0.00063). The pairwise compar-
isons revealed that Dma(l) from 549 to 556 nm presented a
significant difference among the 3 types of lesions. This spec-
tral region corresponds to an absorption peak in deoxyhemo-
globin. These results showed the importance of subtracting the
optical properties of the surrounding healthy skin for each
lesion to reduce the variations due to differences in skin type
and condition. The ANOVA and Tukey tests of Dms

0(l) show a
significant difference among the 3 types of lesions when using

the spectral range between 455 and 765 nm. Both SCCs and
BCCs presented on average a higher differential reduced
scattering coefficient than actinic keratosis and seborrheic
keratosis (Fig. 3). An ANOVA and Tukey test ofma(l)L revealed
no significant difference among all 4 types of lesions. However,
the ANOVA test of Dma(l) showed a P value that indicates a
significant difference (P < 0.01) in the spectral region of 455 to
633 nm with the lowest P ¼ 0.0008 at 577 nm. The absorption
coefficient spectra for seborrheic keratoses have the largest
variation (Fig. 3). The subtraction of the reference absorption
coefficients from the lesions' absorption coefficients reduces
the overlap among the types of lesions and resulted in a
statistically significant difference between actinic keratoses,
SCCs, and BCCs. The pairwise comparison of Dms

0(l) between
actinic keratosis with seborrheic keratosis, actinic keratosis
with SCC, seborrheic keratosis with BCC, and seborrheic
keratosis with SCC in the wavelength range between 455 and
765 nm was statistically significant.

Figure 2. Average absorption
coefficient spectra ma(l) (A) and
average reduced scattering
coefficient (B) for skin types 1, 2, and
3 estimated from 47, 816, and 44
lesions, respectively. C, average
absorption coefficient spectra. D,
average reduced scattering
coefficient spectra. Average
differential absorption coefficient
spectra (E) and average differential
reduced scattering coefficient
spectra (F) for common nevi,
dysplastic nevi, and melanoma.
The error bars represent SEs.
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This higher light scattering in cancerous cases can be
explained by the larger average effective size of the scattering
centers. SCC in situ has not yet penetrated through the
basement membrane of the dermo-epidermal junction. SCCs
typically appear as scaling plaques with sharply defined red
color. Histologically, all epidermal layers may contain atypical
keratinocytes. The larger amount of atypical keratinocytes in
SCCs can increase the light scattering in this type of skin lesion
and significantly affect its contribution to diffusely reflected
light on the surface. SCCs may penetrate the basement mem-
brane to become invasive. More advanced, invasive SCCs may
appear clinically as hyperkeratosis and may ulcerate (40),
which can affect the measurements of optical properties. To
avoid this problem, we conducted the measurements in areas
that did not present this condition.

Actinic keratosis may appear rough and scaly and may
develop into a SCCs. Histologically, actinic keratoses are
recognized by the presence of atypical keratinocytes in the
deeper portions of the epidermis. Defective maturation of the
superficial epidermal layers results in parakeratosis, alternat-
ing with hyperkeratosis (40, 41). During the data collection, we
avoided areas that presented hyperkeratosis. The amounts of
atypical keratinocytes and collagen are factors related to the
amount of light scattering in the lesion.

BCCs are derived from the basal layer of keratinocytes, the
deepest cell layer of the epidermis. BCCs can present nodular
aggregates of basalioma cells in the dermis and exhibit periph-
eral palisading and retraction artifacts. Melanin can also be
present in the tumor and in the surrounding stroma, as
observed in pigmented BCCs. The aggregation of basalioma

cells can increase the light scattering in these types of malig-
nant lesions. The progression of seborrheic keratosis into BCC
and SCC is rare (42, 43). However, seborrheic keratoses can
clinically resemble SCCs, and for this reason, seborrheic ker-
atoses are commonly removed or biopsied for histopathologic
examination (44). Seborrheic keratoses, composed of basaloid
cells admixed with some squamoid cells, can be pigmented
when some cells containmelanin transferred fromneighboring
melanocytes.

The classifications of the skin lesions were carried out
directly for the measured diffuse reflectance spectra. The
advantage of using these direct measurements is that no
homogeneity assumption is required. To design the classifiers,
first we selected features from the diffuse reflectance spectra
that effectively separated themalignant group from the benign
group. The nature of the acquired diffuse reflectance spectra
and what they represent played a role in determining their
effectiveness. The characteristics of the diffuse reflectance data
indicate that particular spectral regions have higher separa-
bility among the different classes. We used the continuous
wavelet transform to extract themost effective features in the 2
classes under analysis (10). On the basis of the features, we
investigated the use of multiple classification schemes to
separate the skin lesions into clinically significant categories
(benign, precancerous, and cancerous) as identified by their
clinical and histopathologic diagnoses. The most successful
classification scheme was ANN in combination with a genetic
algorithm. For the pigmented and nonpigmented lesion
groups, we classified the lesions into 2 classes at a time and
repeated this for the subgroups, until we achieved the desired
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Figure 3. Average absorption
coefficient spectra (A), average
reduced scattering coefficient
spectra (B), average differential
absorption coefficient spectra (C),
and average differential reduced
scattering coefficient spectra (D)
for SCCs, BCCs, actinic keratosis
(AK), and seborrheic keratosis (SK).
The error bars represent SEs.
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degree of categorization. Figure 4 illustrates the hierarchical
classification system for pigmented lesions. This particular
classification scheme intrinsically emphasizes the primary
importance of accurate classification of melanoma and severe
dysplastic nevi. Each stage consists of a single classifier. In the
first stage, melanoma is separated from the other lesions. In a
similar way, in each stage, the most "malignant" type lesion is
separated from the remaining categories.
Table 1 presents the confusion matrixes for the training and

testing sets, where the row headers show the ground truths
from the histopathologic diagnosis and the column headers
indicate theOIDRS classifications. The classification process in
the testing set achieved 90% sensitivity and specificity for
melanoma detection. Table 2 shows the sensitivity and spec-
ificity for each classifier in the hierarchical classification
scheme. The minimum sensitivity is 89%, which corresponds
to the classifiers that separatemild dysplastic nevi formbenign

common nevi. Sensitivity indicates the percentage of correctly
identified positives (true positives) and specificity measures
the proportion of negatives, which are correctly identified.

For the nonpigmented group, a single ANN classifier sepa-
rated BCC and SCC from actinic keratosis and seborrheic
keratosis. The designed classifier generated a sensitivity of
97% and a specificity of 96%. Table 3 shows the classification
results for nonpigmented lesions. For the testing set, the
sensitivity and specificity were both 92%.

Conclusions
This study established that it is feasible to use OIDRS as a

potential tool for in vivo discrimination of malignant cutaneous
melanoma from other types of pigmented skin lesions. In a
clinical trial, OIDRS distinguished malignant melanoma with
90% sensitivity and specificity for the testing set. The sensitivity
and specificity for the training set were 100% and 95%, respec-
tively. This system has also successfully classified BCCs and
SCCs with 92% sensitivity and specificity. The sensitivity and
specificity for the training set were 97% and 96%, respectively.
Light scattering events inside the skin tissues change signifi-
cantlywith thedevelopment stageof the skin lesion. This change
in the tissue scattering properties in the diffuse reflectance
spectrum forms a physiologic basis for automated classification
of different skin lesions based on OIDRS measurements.
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Table 3. Nonpigmented lesions confusion
matrix

Predicted

Actual BCC/SCC AK/SK Total

Training
BCC (n ¼ 78)/SCC
(n ¼ 49)

123 4 127

AK (n ¼ 38)/SK
(n ¼ 12)

2 48 50

Testing
BCC (n ¼ 39)/SCC
(n ¼ 25)

59 5 64

AK (n ¼ 19)/SK
(n ¼ 6)

2 23 25

Abbreviations: AK, actinic keratosis; SK, seborrheickeratosis.
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Figure 4. The classification scheme for pigmented lesions.
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